Modular Homes circa 2016 – Another Round?

I received an email from a friend who sent me a link to a specific program of modular homes. She asked me what I thought of modular homes for San Antonio. The link she sent me was for Indy Mod Homes.

One thing for sure, the concept of building modular homes is having another renaissance period right now, and it’s a very hot topic. Others have tried. You might be familiar with Frank Lloyd Wright’s Usonian Homes. They were intended to be affordable, modest, modular, and even so easy to construct, any able bodied owner might be able to construct it him or herself. In reality, it didn’t really work out that way, but the effort started way back in the Depression years. So the current crop of modular homes is not a breakthrough movement at all. Thomas Edison built a series of concrete homes (some still exist). Sears provided kit homes, and Buckminster Fuller also kicked the idea around a bit with his Dymaxion Homes. If you are not familiar with what a Dymaxion house looks like, imagine combining an Airstream trailer with a hamburger bun. Here is a good link for an overview of Frank Lloyd Wright’s Usonian homes.

In my opinion, the modular examples I’ve seen (mostly in publications), lean toward high-end luxury modernist tastes. As with almost all published versions of residential living, the homes are targeted for upper-middle class and upper class buyers. The examples on the Indy Mod Homes website were in the range of 1400-1800 square feet, which is good, but they start in the $300,000’s, which is not so good. And if you look carefully, not only are the Master Bedrooms modestly sized, but the secondary bedrooms are less than 100 square feet each. Some were ten feet by less than eight feet! Not what I would expect for a home priced at over a quarter of a million dollars.

As you would imagine, I’m one of those guys whose scrutiny radar automatically activates when claims of “green” and “sustainability” are tossed about. Clicking on the “Mod=Green” tab on the Indy Mod website, most of the bullet points refer to the control afforded by constructing the modules in a controlled factory and being able to recycle much of the scrap. That’s all a factor of design, and the same level of recycling can happen at site-built projects too. And they say the site is not disturbed during construction apart from what happens to the site to create the basements (which is not mentioned). And what exactly do they mean when they claim that, “The whole manufacturing process for modular homes is sustainable”? Really? Are they utilizing materials at a rate that would not prevent future generations from doing the same?

They admit that the homes are based on stick construction, so they’re not much different from conventional construction apparently, when it comes to the kind of materials that are used. From what I can tell, modular homes like this represent the offspring of a fling between conventional mass production housing and mass production mobile homes. Only mobile homes are not this luxurious.

I think that what’s needed in San Antonio are affordable, durable, quality (not luxurious), energy/water efficient, climate responsive, healthy homes that are appropriate at all stages of life and mobility. Entire communities could spring up from just a few good examples that can be built here. I feel kind of sheepish wanting to call this kind of home “green” or “sustainable” since those terms have already been widely misused, misunderstood, and corrupted. What I have in mind goes beyond what is now categorized as “green.” It’s going to be a huge challenge to achieve this kind of housing meeting all of the definition.

So, is San Antonio ready for modular homes? Maybe. But not the Indy Mod template. We should strive for better if we try at all. And jury is still out whether off-site fabrication is truly a “green” or “sustainable” advantage over site-built homes. One thing for sure, we need to start with climate responsive design and materials. That’s not new. The earliest builders here, and I mean the native tribes, the Spanish settlers, and even the soon to follow German builders figured it out. The industrial revolution, cheap electricity, and other factors gave all the builders mass amnesia and we generally forgot how to design responsibly. And that’s why we’re looking for energy and water efficient strategies now.

Solar Power Station #1

We’re coming up on the 10th anniversary of the dedication of San Antonio’s first Solar Power Station. Designed as an educational installation, this modest (by today’s standards) 14 kilowatt photovoltaic array was installed on the grounds of the Institute of Texan Cultures (operated by the University of Texas at San Antonio) in downtown San Antonio. On November 19th, 2003, dignitaries arrived to throw the switch that allowed solar energy produced by the installation to be fed into the CPS Energy grid for the first time. The photos that accompany this post are taken during the final days of construction and on opening day when the first group of school children were introduced to the basics of solar energy. The building that housed the inverter and other equipment also included three interactive windows describing solar energy and indicating how much energy was being produced at that time along with another readout that indicated how much energy that the system would produce at the same time under ideal conditions. That way, if the actual energy output was half of the ideal output, those who were looking at the display could then determine the impact of atmospheric conditions accounting for the energy drop.

I would have liked to go out to the Solar Power Station on the 10th anniversary of its dedication to see how much energy had been provided to the city over the past ten years, but I found out that recently the installation was demolished. Very few knew about the demise of the Solar Power Plant, but no one had apparently fought to save it. I have been able to piece some of the back story though. A few years ago, UTSA had sold the parking lot of the Institute including the portion of the grounds where the Solar Power Station was installed to a private company. At that time, CPS Energy made attempts to remove the installation in order to locate it elsewhere and continue it’s educational role. Relocation efforts were halted by UTSA, and very recently, the new owners of the property decided to take the Solar Power Plant down. I still have not found out what happened to the 198 panels, the inverter, or the educational boxes, but I hope they will be able to continue producing energy wherever they are.



Bee Rescue

Worried about pollination of flowers? If not, you should be. If not for pollination, much of the food that gets to our table would not arrive. Remember too, that if you don’t eat much in the way of fruits, vegetables, and grains, don’t forget that the cows, pigs, and chickens that you eat do. Nature is full of pollinators, including birds and moths. Arguably, the most important of these are the bees. And bee populations are in trouble.

What can you do to support the bees (and by doing so support you and your family)? If you have no idea, the first thing you can do is to come to the San Antonio Sustainable Living regular monthly meeting tomorrow evening (Tuesday) and find out what can be done.

Our presenter tomorrow is Walter Schumacher of Central Texas Honey Bee Rescue [can be found at ]. Walter is one of the premier supporters of our bee friends in Central and South Texas. His company rescues bees that happen to establish their hives where humans don’t want them and he organizes a network of independent beekeepers in a Co-op of sorts marketing some of the best honey that you might ever taste. He knows about the conventional bee and honey business and knows about the hype of “killer” bees. If you happened to hear his tent talk at this year’s Renewable Energy Roundup in Fredericksburg, you know what an informative and entertaining font of knowledge Walter truly is. Maybe it’s because he’s been stung a few times. Oh, and he also knows about the benefits of bee stings and how it’s different than just being injected by bee venom.

I know I’ve said this before, but this is one meeting you will NOT want to miss. Hope to see you at 7pm in the classroom inside Whole Foods Market in the Quarry Shopping Center. Oh, he will not be able to sell any of his honey tomorrow night, but you are encouraged to ask our local Whole Foods Markets to carry the Honey Bee Kind honey in San Antonio as they do in Austin.

Set your calendars also for November’s program (on the 26th) when we bring back Kent Rabon who makes the fabulous Greenstar Blox [ ]. There will be no meeting in December, but we’re planning on coming back for our 2014 season in January.

100 Year Old Bridge

Austin Highway Then and Now  [Click on the title to access the photo]

I cross this bridge almost every day. I found a photo of this bridge posted on “Back in the Day San Antonio” Facebook page and was told the location. I was intrigued since I recognized the location even after the passage of approximately 100 years. Years ago, I came across a map of San Antonio from 1935 and it indicated this bridge was on the primary road between San Antonio and Austin. In the sepia photo, you can see that a car coming in from Austin would approach the photographer and cross the Salado Creek concrete bridge and continue toward the photographer crossing in front of him and disappearing off the right side of the photo. The photo is pointing northeast. On today’s map, that old road, just off the right of the photo is called Corrine today. Corrine can be seen blending into today’s Harry Wurzbach Road leading further southwest toward Fort Sam Houston Army post. This was the 1935 prime road just outside San Antonio on the way to Austin. Today, there’s the Austin Highway which was the main road sometime after 1935 and continued to be the main road until Interstate Highway 35 was completed bypassing all of this on the way to downtown SA. The Austin Highway “new” bridge is shown in the color photo on the left.

Yesterday, I tried to find the spot where the sepia photo was taken and took a shot or two with my phone. Amazed at the way transportation routes and cameras have changed in a hundred years, it was just as amazing to see the old Salado Creek bridge still in use. Who knows the number of countless floods that have completely submerged this bridge over the decades? And still it survives. Granted, the amount of traffic today is dwarfed by the traffic crossing the “new” Salado Creek bridge on the left side of the color photo, but the old bridge is a testament to what may have been one of the first reinforced concrete bridges in Bexar County still in use. If you take the time to cross the bridge on foot, you can see indications of where old railing or road signs were once attached. You can also see in the middle of the bridge places where the reinforcing steel (re-bars) is now exposed to the surface.

The other day, I was listening to one of my favorite podcasts on my daily 12 mile bike ride that always includes this bridge. The podcast is called “99% Invisible” by Roman Mars. I highly recommend this podcast to anyone interested in obscure and fascinating stories about things that have been forgotten or unappreciated. It’s design-oriented and is my favorite podcast. Last week, I was listening to Roman Mars describing an early example of a reinforced concrete tunnel/bridge at the edge of Golden Gate Park in San Francisco called the Alvord Lake Bridge. It may be the first reinforced concrete structure in America and today looks quite neglected, but still functional. Please go to the 99% Invisible website and read or listen to Episode 81 for the story of the bridge, reinforced concrete, and how an extremely large amount of our country’s infrastructure is neglected reinforced concrete structures that need to be maintained or removed as reinforced concrete does not last forever.

Back to the story on the Alvord Lake Bridge, Roman Mars mentioned that an early innovator in reinforced concrete, E.L. Ransome registered a copyright on twisting bars of steel, now known as “rebar” to improve the adhesion of the concrete to the steel. I learned in architecture school that the elegant success of reinforced concrete is dependent on the duet between concrete and steel. First, they bond very well to each other (and interestingly, even a little bit better if the steel has a thin coat of rust) and most importantly, steel and concrete have the same thermal expansion coefficient. In other words, they shrink in the cold and stretch in the heat at the same length per degree temperature! If they didn’t they would quickly break their bond. I don’t want to give you the impression that rust is great. It’s beneficial only in small amounts and only when the concrete is cast with the steel. Once cast, care must be given to insure moisture does not penetrate the concrete or the steel does not have a connection with the ground. If these things happen, rust can become a problem that can lead to the structure’s destruction.

I noticed the exposed reinforcing steel on the old Salado Creek bridge was twisted. It was not easy to determine whether the steel was a twisted square bar or a twisted steel ribbon, but it seemed to relate to what I had heard on the podcast regarding E.L. Ransome’s patent over a century ago. Today’s reinforcing steel is different. Instead of being twisted, today’s rebar features ribs on round steel to provide a good grip with concrete.  I know there’s not much regarding a “lesson” with this post. I was just struck by realizing the age of this old bridge I ride on every day and being reminded about the historic story of reinforced concrete thanks to 99% Invisible and Roman Mars.

San Antonio Rainfall Note

rainfall chart

At the end of 2012, Richard Seager and others at the Columbia University Earth Institute released a paper describing their findings based on climate trends and forecasting models. The report says that in many areas of the Southwest, including Texas, winter precipitation will decrease through the year 2040. This is particularly problematic for snows in the cascades which is a major source of water for irrigation as well as potable use in California from snowmelt. In Texas, drier winter and spring soils also cause problems due to less surface water and moist soils available for evaporation which in turn provides upper level moisture necessary for rainfall. In summary, the report suggests that Texans should expect about a ten percent drop in precipitation through 2040. We can expect dry years like what we experienced from late 2010 through late 2011. Prudence would dictate that we adjust our use of water and expectation of water sources accordingly. For those of us who are planning to install a rainwater harvesting system, I suggest an increase in both the collection surface area and cistern capacity would be in order. In rural areas, rainwater cistern planning should also design for an emergency fire supression reservoir (which could be the lower section of one of your cisterns) complete with a fitting similar to a fire hydrant fitting that will be compatible with your local volunteer fire department equipment. Droughts are likely to provide ideal conditions for wildfire, so having a fire supression reservoir could make the difference in saving your property.

San Antonio TEDx Talks are now on YouTube

San Antonio TEDx talks are now here! It was an honor to be chosen as one of the first group of people to give TEDx presentations in San Antonio in October of this year. Todd O’Neill and the entire TEDx San Antonio organizing crew did an absolutely amazing job organizing the event including the pre-event get-togethers, the rehearsal, the event itself, and the post-event party! And now, Todd and company has edited and uploaded the talks on YouTube. What an eclectic mix of presenters and presentations! These are some amazing people. Go to the link and learn some very interesting things and points of view from here in San Antonio. Let me know what you think. It was fun.

Build with Earth

I’ve been a big fan of earthen construction for many years, and stacked a few dirt blocks in the past ten years or so, but it wasn’t until about eight weeks ago in early November when I actually got my feet muddy helping some others start building cob walls for a small accessory building in Austin. Gayle Borst and the gang of Design~Build~Live natural building fans had organized the event, and it continues one cob of clay, sand, and straw at a time. The mud was cold and it must be even more cold now for those still working away, but there’s something very basic about feeling mud between the toes and sculpting a building by hand. Who among us hasn’t played in the mud or sand as a child. I was five when my dad decided his worm farm project wasn’t quite working out as well as he thought it would and turned the farm into a fantastic sand box. Thank goodness the worms preferred the yard outside the farm more than the farm itself. If you hear of any workshop event in cob construction, compressed earth block, or adobe near you. I highly recommend you sign up and participate in it. It will make you feel young again. Keep in touch with me or with Design~Build~Live for events and workshops in 2011.

SASL Meeting Schedule

The San Antonio Sustainable Living group meets monthly and you are invited to attend. We have a guest speaker each month with topics ranging all over the green and sustainability spectrum. Materials, design, lifestyle, and construction practices are among some of the general categories featured. All meetings are free to attend. You will not be embarrassed. We do request you sign in, but the lists are not used for sales, or giving away to anyone and are very rarely even entered into a folder of people who attended the meetings. In other words, will not be a source of spam.

Our regular meetings are the 4th Tuesday of each month (except December), so make a bookmark for these dates on your calendar in advance and check back to the the SA Environmental Meetup page for more details on each months’ programs.  Please attend the next San Antonio Sustainable Living meeting at 7pm when the meetings begin. We usually end the meetings by 8:30, but rarely go beyond 9pm. The meetings are held at San Antonio College’s EcoCentro building located at 1802 North Main Street in San Antonio. There is no admission fee. Hope to see you there.

Save Water: Turn Off Lights. Save Energy: Fix Leaks

Isn’t that title a bit mixed up?  Not once you understand the relationship between water and energy. Simply put, it takes energy to distribute water all over town as well as treating wastewater. Likewise, a considerable amount of water is required to produce energy. Approximately 4 percent of the nation’s energy is used in the distribution and treatment of water.  It’s no surprise that locally, SAWS is one of CPS Energy’s largest customers. So when you have a water leak, not only is water being wasted, it takes a little bit of energy to maintain water main pressure to feed the leak. Leaks are one thing. Letting water run too long is a more serious matter and does lead to measurable energy loss. According to the EPA’s WaterSense webpage, letting your faucet run for 5 minutes uses as much energy as leaving a 60-watt light bulb on for 14 hours.

Then there’s the energy required in heating water. If you are not already using solar energy to heat water, the energy required to heat water for bathing, washing dishes, and other uses is considerable. We know you are already saving some of this energy by using only cold water to wash clothes, right? If you are using electric energy to heat water, the national average indicates ¼ of your total electric use goes to heat that water!

What about the other side of the coin? How much water is used to produce electricity? Again, not counting renewable energy from solar, landfill gas, and wind, we get most of our electricity from coal-fired and nuclear power plants with a little bit now and then from natural gas-fired power plants. These are just ways to heat water to produce steam energy to drive turbines. As you might imagine, a lot of water is required by power plants to produce electricity. That’s why power plants are located next to reliable sources of water such as lakes. According to research by the National Renewable Energy Laboratory (NREL), for the Department of Energy, these types of energy generating plants (called “thermally driven, water-cooled energy conversion cycle” or “thermoelectric” plants) required 0.47 gallons of water for every kilowatt-hour of energy measured at the customer’s meter. This is primarily from water lost to steam evaporation during the energy production process, not water running through the plant and returning to the lake or other water source.  In San Antonio, CPS Energy claims that currently, 11 percent of our energy comes from wind, landfill gas, and solar sources. That means 89 percent of our energy is from thermoelectric plants. So, for our particular mix, it takes 0.42 gallons of water used for every kilowatt-hour of energy measured at our home electric meters (assuming no water is used in the production of electricity from our wind, landfill gas, and solar sources).

So, if leaving your water run for five minutes uses as much energy as leaving a 60-watt light bulb on for 14 hours, remember too, that leaving a 60-watt light bulb on for 14 hours means another 0.35 gallons is lost to produce that energy.  When you are careful about your water use, you’re saving energy. And when you save energy, you’re saving water. Makes you feel good to do both, doesn’t it?